Cool Coatings for Cool Cars: A measure to cool the globe

Hashem Akbari

Heat Island Group Lawrence Berkeley National Laboratory

tel. 510/486-4287

H_Akbari@LBL.gov

http://HeatIsland.LBL.gov

http://CoolColors.LBL.gov

May 15, 2008

Sizing of A/C

- Vehicle heat loads (what heats cabin)
 - Solar gain through glazing
 - Conduction through shell (driven by sun, ambient air)
 - Engine
 - Occupants
- Passenger car A/C sizing parameters
 - Dominated by solar, convective/conductive loads
 - Soak temperature $T_{soak} = T_{soak}(solar gain, T_{ambient})$
 - Desired cool-down time τ
 - A/C capacity = $f(T_{\text{soak}}, \tau)$

Technologies to improve A/C performance

- Enhanced mechanical efficiency
 - Controls
 - Drives
 - Components
- Soak (stationary) load reduction
 - Glazing (low-ε, electrochromics, reflective hydrides, liquid crystals, suspended particle displays, photochromics, thermochromics)
 - Low-absorptance shell coatings (cool colors)
 - Ventilation
- Moving load reduction
 - Glazing
 - Engine firewall insulation

A/C effect on fuel efficiency

(Source: Bevilacqua, 1999)

Most sunlight (57%) is invisible

Reducing solar absorptance using NIR-reflective pigments

Reducing solar absorptance (A) using bilayer coatings

- Top coat: dark pigment with low NIR absorptance (e.g., dioxazine purple)
- Undercoat: pigment with high NIR reflectance (e.g., titanium white)

Solar reflectance of bilayer purple coatings

Automotive Paint System (Courtesy: Nichols, Ford Motor Company)

Gloss, protects basecoat from UV light Clearcoat 50 um Color, metallic flakes Basecoat 20 um Smoothes E-coat, protects Primer 25 um E-coat from light, promotes adhesion Electrocoat 25um Provides corrosion protection Substrate (EG Steel, Aluminum, SMC...) Provides corrosion protection

Effect of primer color on solar gain

(Courtesy: Hoke and Greiner, Ford Motor Company)

SRB: Solar Reflective Black

Absorptances: Standard Black (0.95), SRB/Black Primer (0.75), SRB/White Primer (0.62)

Reflectance of sample car paints

Market deployment of cool color cars

- Toyota experiment (surface temperature 10 K cooler with cool coatings.)
- Ford is also working on a similar technology.

Cooling load reduction

◆Measurement: Thermograph (2006/01/29)

Cooling load reduction

◆Measurement: Air temperature in cars (2006/01/27)

- Air temp. in conventional car went to as high as 40 deg C in the daytime.
- SRP car suppressed an increase in surface temp. by 5~10 deg C.
- Air temp. in SRP car also was reduced by a maximum of 3.9~1.6 deg C.

Effect of A/C on fuel consumption

	US	Cal.
No. of Vehicles (10 ⁶)	213	26
Miles/year/car (10 ³)	12	12
Fuel Eff [mpg]	20	20
Annual fuel use [10 ⁹ gal]	130	15
Annual fuel expense at 2.5 \$/gal [\$B]	230	38
Reduced efficiency due to A/C	15%	15%
% time AC runs	50%	50%
A/C contribution to fuel use [10 ⁹ gal]	9.6	1.2
A/C contribution to fuel expense [\$B]	24	3
A/C contribution to CO2 [MT]	84	10

Benefits of 2.8K (5°F) reduction in soak temperature

	US	Cal.
Reduction in AC capacity	11%	11%
Improvement in mpg	1.8%	1.8%
Reduced NOx emission	4.5%	4.5%
Reduced fuel expense (\$M)	2876	346
Reduced CO emission (tonne/day)	978	117.8
Reduced NOx emission (tonne/day)	103	12.4
Reduced NMHC emission (tonne/day)	18	2.2
Reduced CO2 emission (MT/year)	20.2	2.4

